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Abstract: The three-body problem is a fundamental model in astrophysics that studies the law-of-
motion problem of three objects that are considered as masses under the gravitational influence. This 
paper utilizes classical mechanical equations and computer's advantages in terms of numerical 
operations to iteratively solve the three-body problem and determine its bound state. In this 
experiment, the three objects are analyzed by force; equations are listed using Newton's second law 
and law of universal gravitation; and the MATLAB program is written according to the equations for 
iterative solution, which calculates the position and velocity of the three objects at a specific time 
under different circumstances. In addition, in this paper, the Gui design and animation of MATLAB 
are utilized to investigate and display the problem. A simple and friendly interface is designed, the 
position and velocity of the objects are also shown on the axes in real time through the erasure 
animation, which is an attempt to perform astrophysical experiments on the computer. 

1. Introduction 
The three-body problem is a well-known problem in classical mechanics, quantum mechanics, and 

astronomy that has not yet been completely solved. In astrophysics, the three-body problem focuses 
on the gravitational motion of three bodies that can be viewed as three mass points under the influence 
of gravity on each other—i.e., given the mass, initial positions, and initial velocities of three bodies, 
the variation of their positions and velocities with time, macroscopic laws, and global properties of 
their motion can be further discussed. 

Due to the constant changes of positions and velocities of the three objects in the system, the three-
body problem cannot be streamlined in a similar solution to the way the two-body problem is treated. 
Since the three-body problem cannot be resolved strictly, in studying the motion of celestial bodies, 
we can only apply various approximate solutions according to the actual situation. The first one is 
analytical method, the basic principle of which is to expand the coordinates and velocity of celestial 
bodies into approximate analytical expressions in the form of series of time or other small parameters, 
so as to discuss the changes of coordinates or orbital elements of celestial bodies over time. The 
second method is qualitative research, which adopts the qualitative theory of differential equations to 
study the macroscopic and global laws of three-body motion over a long period of time. The third 
category is the numerical method, which directly applies the computational method in differential 
equations to measure the exact positions and velocities of the celestial bodies at certain moments. 
Each of these three types of methods has advantages and disadvantages. 

Since the difficulties in solving three-body problem lies in its uncertainty and unpredictability, one 
can consider a third type of approach based on force analysis and classical mechanical equations, 
taking advantage of iterative computation of computers to find its numerical solution. 

2. Model assumptions 
(1) Ignores the relativistic effects. 
(2) The cosmic space in which it is located is isotropic, regardless of the role of other celestial 

bodies on the system. 
(3) Ignoring tidal forces, resistance of intergalactic space particles, and assuming no energy loss 

during motion. 
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(4) Consider celestial bodies as masses, regardless of their collisions with each other. 
(5) The three celestial bodies have the same mass. 

3. Description of symbols 
Table 1. Symbols & Descriptions 

G The gravitational constant 
m Celestial masses 
t Running time 
d Location of celestial bodies 
p Celestial velocity 
a Celestial acceleration 
x,y,z The position of the celestial body in the Cartesian coordinates system 
u,v,w The velocity of the objects in the Cartesian coordinate system 
ax,ay,az The acceleration of the objects in the Cartesian coordinate system 
Fx,Fy,Fz Inter-object forces 
E1,E2,E3 The difference between the kinetic and potential energy of celestial bodies 

4. Model building 
4.1 State of Specific Moment 

Since the positions and velocities of the three objects vary from moment to moment, we can now 
take a short interval of time: dt. Assuming that the parameters of the system do not change throughout 
this time, we can consider the state of the system at each moment and estimate the state at the next 
moment, after dt. At each moment, each celestial body has a specific position and velocity, which 
means there would be six unknown quantities. By applying Newton's second law and law of universal 
gravitation between each two celestial bodies, we could have equation sets composed of six equations, 
which is sufficient enough to solve these six unknown quantities. If dt is infinitely small, a precise 
solution can then be found. However, this condition is not practical to be realized, so we divide a 
period of time into many small parts and solve iteratively, via computer programming, to obtain the 
changes of each parameter over time and the end state of the system. 

4.1.1 Force Analysis 

 

Figure 1. Force analysis of the three-body problem 
As shown in Figure 1, each object is subject to the gravitational force of the other two objects. For 

ease of calculation, the effect of object 1 on object 2, F12,the effect of object 2 on object 3, F23, and 
the effect of object 3 on object 1, F13, are decomposed into F12x, F12y, F12z, F23x, F23y, F23z, and F31x, 
F31y, F31z, respectively, in a Cartesian coordinate system. Since F12 = F21, F23 = F32, F31 = F13, the 
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right-hand equivalent of the equation can be used to represent the left. 
Under the action of gravity F12, F23, and F31, acceleration of celestial body 1, 2, and 3 is 

m
FF 3112 +

, and 

m
FF 2312 + ,

m
FF 3123 + , respectively. 

4.1.2 Laws of Motion 
The three objects follow the following laws of motion and iterative equations. 
1) Newton’s Law of Gravitation 
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2) Newton’s Second Law 
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3) Speed Iterations 

 tapp ×+= 111
 (7) 

 tapp ×+= 222
 (8) 

 tapp ×+= 333
 (9) 

4) Iteration of Coordinating Values 
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The solution would also need to decompose the iterative equations of force F, acceleration a, 
velocity, and coordinate values by the Cartesian coordinate system as shown in appendix 1. 

The position and velocity of the three objects at any given moment can be resolved by computer 
programming. 
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4.2 Judgement on Bound State 
Three objects are sometimes closer to or further away from each other, and there is always 

interaction between them. None one of these objects escape into space and never return, which is 
called the bound state of three-body motion. In order to establish whether a given three-body system 
is a bound state, we calculate the kinetic energy and potential energy of each object in the system and 
compare them to obtain the result. 

4.2.1 Problem Analysis and Simplification 
As shown in Figure 2, in a two-body system, one of the celestial bodies is the coordinate origin to 

establish a coordinate system. If the other celestial body to its gravitational potential energy is less 
than the kinetic energy of the celestial body in this coordinate system (Equation (13)), then the 
celestial body will escape out and will not return. Otherwise, if the potential energy is greater than 
the kinetic energy (Equation (14)), the celestial body will have then been in motion around the 
celestial body located in the coordinate origin. 
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Figure 2. Two-body movements 
We now examine the case of three-body. Figure 3 illustrates a simplified model in researching the 

kinetic energy of the celestial body 1. By positioning the center of the triangle, formed by connecting 
the centers of mass in each of the three bodies, to be the coordinate's origin, the estimated kinetic 
energy of body 1 will then be its kinetic energy in the system. Mathematical relation shows that if the 
velocities of body 2 and 3 are V2 and V3, the velocity of the midpoint of their line of connection 
would be 
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Relative velocity of celestial body 1 to this point, 
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Figure 3. Three-body movements 

4.2.2 Determination of Bounding State 
Kinetic energy of celestial body 1, 
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Potential Energy of celestial body 1, 
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Thus, 
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would be the formula for determining the bound state. 
If Ei > 0, then it is not a bound state for object 1; otherwise, if it <0, then it is in the bound state. 

Similarly, there is the formula for the determination of object 2 and object 3: 
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These three formulas can also be solved by decomposing the equations in a Cartesian coordinate 
system, the results of which are located in appendix 2. 

5. Model solving and system simulation 
5.1 Programming and Interfacial Design 

Utilizing the MATLAB language to program, code and comment as referred in appendix 3. The 
graphic interface in the program is shown below in Figure 4. By clicking on the “start” button, the 
popped dialog box will provide blank space to enter parameter values. The default parameters are: G 
(the actual gravitational constant), and m (solar mass). The position and velocity of the planet are 
randomly set. 
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Figure 4. Parameters Input 
Once you click on “OK,” the program will read in the parameters entered in the dialog box 

(otherwise it will use the default values), and start the iterative computation according to the formulas. 
The program will determine the position changes of the three objects at each dt step and display them 
instantly in the coordinate system so we can see the animation of the three objects. (The celestial 
bodies will move outside of the coordinate axis in some cases). 

 

Figure 5. Animation Display 
After the iteration is finished, the coordinates of the three bodies' final states (x1, z1 ,x2, y2, z2, x3, 

y3, z3) will be displayed on the current window. The difference between the kinetic energy of each 
object E1 ,E2, E3 is calculated automatically. If the three bodies' kinetic energies are smaller than the 
potential ones, the interface will pop up the following message, saying: “It is an engage state, which 
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means that the body will come back if time is long enough.” Otherwise, it will show “it is not an 
engage state, which means that the body will not come back no matter how much time is spent”. 

 

Figure 6. Result Obtained 
Displays the solution results in the Command Window: 

x1 = -3.0776e + 005 
y1 = -7.0934e + 005 
z1 = -9.6242e + 005 
x2 = -3.3810e + 005 
y2 = -1.1578e + 005 
z2 = -6.0977e + 003 
x3 = 9.2697e + 004 
y3 = -5.9355e + 005 
z3 = -9.5631e + 005 
E1 = 1.5285e + 040 
E2 = 4.8756e + 040 
E3 = 1.6720e + 040 

By changing the initial values of locations and velocities, there could be various solutions for 
determining if the object is in a bound state. One should note that if the coordinates of two bodies on 
either axis are the same, that could result in zero becoming a denominator, which would give wrong 
output. 

5.2 Model Testing 
By changing each parameter in the dialog box and running the program, we could discover that 

the objects move faster when G and m are relatively larger, as the distance is getting larger. 
Accordingly, when G and m are relatively smaller, the movement of the body slows down. If we set 
the initial velocity of one of these objects to 0, the body will start moving at a lower velocity. All of 
this is in line with reality, which makes the model practically applicable. 

If all m are set to a smaller order of magnitude, such as 1.989 x 1019, where the initial velocities 
of all three objects are set to 0, run the program and it will show the body being almost inactive. The 
current window will then return the following values: 

x1 = 5.0006,y1 = 5.9817,z1 = 7.0016 
x2 = 25.0000, y2 = 9.9970, z2 = 14.9996 
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x3 = 10.0008, y3 = 6.9847, z3 = 4.0021 
E1 = -5.5053e + 015, E2 = -2.2982e + 015, E3 = -5.7897e + 015 

The dialog box shows that “It is an engage state, which means that the body will come back if time 
is long enough”, meaning this is a bound state. A bound state would also occur if the initial velocity 
of the body is set to be a very small order of magnitude. 

6. Model evaluation and outlook 
This paper combines quantitative numerical computation and qualitative animation representation 

to solve the three-body problem. By setting up parameters in a dialog box and modifying the iteration 
step, axis range, and animation playback frequency in the source program, we could theoretically 
solve the three-body problem, in any case, with simple and direct visualization. Of course, this paper 
also contains the following shortcomings and deficiencies in the development of the relevant models 

1) The calculation results are found to be greatly affected by the iterative step length in the 
simulation process. Changing the step length to 0.001 in the source program shows that the trajectory 
of the ball is completely different from when the step length was 0.01. It can be deduced that the 
iterative step length greatly affects the accuracy of the operation. 

2) The simulation of the actual situation is not comprehensive enough, such as the spatial scale of 
the universe, the distance between objects, the speed of travel, etc., and more data needs to be found 
to improve it. 

At the same time, there is still room for developing the models in this paper, such as the effects of 
introducing relativistic effects and the use of calculus to calculate gravity when the distance between 
objects is trivial enough. In addition, if the computer processing speed is fast enough, it is possible to 
set a tiny iteration step and a high screen refresh frequency, so that the results will be closer to perfect. 
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[22] Newton's Second Law: 
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[32] Velocity Iteration: 
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[42] Coordinates Values Iteration: 
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